

Page 1 of 40

A Level

Computing

Course Content Checklist

Name:

Tutor Group:

Teaching Group:

Target Grade:

Page 2 of 40

A Level Computing

This paper tests a student's ability to program, as well as their theoretical knowledge of computer science from
subject content 10 – 13 and 22.

 On Screen Exam, 2 hours 30 minutes

 40% of A-Level

This paper tests a student's ability to program, as well as their theoretical knowledge of computer science from
subject content 14 – 21.

 On Screen Exam, 2 hours 30 minutes

 40% of A-Level

The non-exam assessment assesses student's ability to use the knowledge and skills gained through the course
to solve or investigate a practical problem. Students will be expected to follow a systematic approach to problem
solving, as shown in section 22.

 75 Marks

 20% of A-Level

Page 3 of 40

Course Content Checklist
4.1 Fundamentals of Programming .. 4

4.2 Fundamentals of Data Structures .. 8

4.3 Fundamentals of Algorithms .. 13

4.4 Theory of Computation .. 15

4.5 Fundamentals of Data Representation .. 20

4.6 Fundamentals of Computer Systems ... 25

4.7 Computer Organization and Architecture .. 27

4.8 Consequences of uses of Computing ... 30

4.9 Communication and Networking ... 31

4.10 Fundamentals of Databases ... 35

4.11 Big Data .. 36

4.12 Fundamentals of Functional programming .. 37

4.13 Software Development (Project) ... 40

Page 4 of 40

4.1 Fundamentals of Programming

4.1.1 Programming

4.1.1.1 Data types Covered Revised

Understand the concept of a data type.

Understand and use the following appropriately:

• integer

• real/float

• Boolean

• character

• string

• date/time

• records (or equivalent)

• arrays (or equivalent)

Variables declared as a pointer or reference data type are used as stores for memory addresses of objects
created at runtime, ie dynamically. Not all languages support explicit pointer types, but students should have an
opportunity to understand this data type.

Define and use user-defined data types based on language-defined (built-in) data types.

4.1.1.2 Programming concepts

Use, understand and know how the following statement types can be combined in
programs:

• variable declaration

• constant declaration

• assignment

• iteration

• selection

• subroutine (procedure/function)

The three combining principles (sequence, iteration/repetition and selection/choice) are basic to all imperative
programming languages.

Use definite and indefinite iteration, including indefinite iteration with the condition(s) at
the start or the end of the iterative structure. A theoretical understanding of condition(s)
at either end of an iterative structure is required, regardless of whether they are
supported by the language being used.

Use nested selection and nested iteration structures.

Use meaningful identifier names and know why it is important to use them.

Page 5 of 40

4.1.1.3 Arithmetic operations in a programming language

Be familiar with and be able to use:
• addition
• subtraction
• multiplication
• real/float division
• integer division, including remainders
• exponentiation
• rounding
• truncation.

4.1.1.4 Relational operations in a programming language

Be familiar with and be able to use:
• equal to
• not equal to
• less than
• greater than
• less than or equal to
• greater than or equal to.

4.1.1.5 Boolean operations in a programming language

Be familiar with and be able to use:
• NOT
• AND
• OR
• XOR

4.1.1.6 Constants and variables in a programming language

Be able to explain the differences between a variable and a constant.

Be able to explain the advantages of using named constants.

4.1.1.7 String-handling operations in a programming language

Be familiar with and be able to use:

 length

 position

 substring

 concatenation

 character → character code

 character code → character

 string conversion operations.

Expected string conversion operations:
• string to integer
• string to float
• integer to string
• float to string
• date/time to string
• string to date/time.

4.1.1.8 Random number generation in a programming language

Be familiar with, and be able to use, random number generation.

Page 6 of 40

4.1.1.9 Exception handling

Be familiar with the concept of exception handling.

Know how to use exception handling in a programming language with which students are
familiar.

4.1.1.10 Subroutines (procedures/functions)

Be familiar with subroutines and their uses.

Know that a subroutine is a named ‘out of line’ block of code that may be executed
(called) by simply writing its name in a program statement.

Be able to explain the advantages of using subroutines in programs.

4.1.1.11 Parameters of subroutines

Be able to describe the use of parameters to pass data within programs.

Be able to use subroutines with interfaces.

4.1.1.12 Returning a value/values from a subroutine

Be able to use subroutines that return values to the calling routine.

4.1.1.13 Local variables in subroutines

Know that subroutines may declare their own variables, called local variables, and that
local variables:

• exist only while the subroutine is executing

• are accessible only within the subroutine.

Be able to use local variables and explain why it is good practice to do so.

4.1.1.14 Global variables in a programming language

Be able to contrast local variables with global variables.

4.1.1.15 Role of stack frames in subroutine calls

Be able to explain how a stack frame is used with subroutine calls to store:
• return addresses
• parameters
• local variables

4.1.1.16 Recursive techniques

Be familiar with the use of recursive techniques in programming languages (general and
base cases and the mechanism for implementation).

Be able to solve simple problems using recursion.

Page 7 of 40

4.1.2 Programming Paradigms

4.1.2.1 Programming Paradigms

Understand the characteristics of the procedural- and object-oriented programming
paradigms, and have experience of programming in each.

4.1.2.2 Procedural-Oriented Programming

Understand the structured approach to program design and construction.

Be able to construct and use hierarchy charts when designing programs.

Be able to explain the advantages of the structured approach.

4.1.2.3 Object-oriented programming

Be familiar with the concepts of:

 class

 object

 instantiation

 encapsulation

 inheritance

 aggregation

 association aggregation

 composition aggregation

 polymorphism

 overriding

Students should know that:

--a class defines methods and property/attribute fields
that capture the common behaviours and
characteristics of objects

--objects based on a class are created using a
constructor, implicit or explicit, and a reference to the
object assigned to a reference variable of the class
type.

Know why the object-oriented paradigm is used.

Be aware of the following object-oriented design principles:
• encapsulate what varies
• favour composition over inheritance
• program to interfaces, not implementation

Be able to write object-oriented programs

Practical experience of coding for user-defined classes involving:

 abstract, virtual and static methods

 inheritance

 aggregation

 polymorphism

 public, private and protected specifiers.

Be able to draw and interpret class diagrams

Page 8 of 40

4.2 Fundamentals of Data Structures

4.2.1 Data structures and abstract data types

4.2.1.1 Data structures

Be familiar with the concept of data structures.

4.2.1.2 Single- and multi-dimensional arrays (or equivalent)

Use arrays (or equivalent) in the design of solutions to simple problems.

 A one-dimensional array is a useful way of representing a vector.

 A two-dimensional array is a useful way of representing a matrix.

 More generally, an n-dimensional array is a set of elements with the same data type that are indexed by a
tuple of n integers, where a tuple is an ordered list of elements.

4.2.1.3 Fields, records and files

Be able to read/write from/to a text file.

Be able to read/write data from/to a binary (non- text) file.

4.2.1.4 Abstract data types/data structures

Be familiar with the concept and uses of a:
• queue
• stack
• list
• graph
• tree
• hash table
• dictionary
• vector

Be able to distinguish between static and dynamic structures and compare their uses, as
well as explaining the advantages and disadvantages of each.

Describe the creation and maintenance of data within:
• queues (linear, circular, priority)
• stacks
• hash tables

Page 9 of 40

4.2.2 Queues

4.2.2.1 Queues

Be able to describe and apply the following to linear queues, circular queues and priority
queues:
• add an item
• remove an item
• test for an empty queue
• test for a full queue.

4.2.3 Stacks

4.2.3.1 Stacks

Be able to describe and apply the following
operations:
• push
• pop
• peek or top
• test for empty stack
• test for stack full.

4.2.4 Graphs

4.2.4.1 Graphs

Be aware of a graph as a data structure used to represent more complex relationships.

Be familiar with typical uses for graphs.

Be able to explain the terms:
• graph
• weighted graph
• vertex/node
• edge/arc
• undirected graph
• directed graph.

Know how an adjacency matrix and an adjacency list may be used to represent a graph.

Be able to compare the use of adjacency matrices and adjacency lists.

4.2.5 Trees

4.2.5.1 Trees

Know that a tree is a connected, undirected graph with no cycles.
Note that a tree does not have to have a root.

Page 10 of 40

Know that a rooted tree is a tree in which one vertex has been designed as the root and
every edge is directed away from the root.

Know that a binary tree is a rooted tree in which each node has at most two children.
A common application of a binary tree is as a binary search tree.

Be familiar with typical uses for rooted trees.

4.2.6 Hash Tables

4.2.6.1 Hash Tables

Be familiar with the concept of a hash table and its uses.
A hash table is a data structure that creates a mapping between keys and values.

Be able to apply simple hashing algorithms.

Know what is meant by a collision and how collisions are handled using rehashing.
A collision occurs when two key values compute the same hash.

4.2.7 Dictionaries

4.2.7.1 Dictionaries

Be familiar with the concept of a dictionary.
A collection of key-value pairs in which the value is accessed via the associated key.

Be familiar with simple applications of dictionaries, for example information retrieval, and
have experience of using a dictionary data structure in a programming language.

Information retrieval:
For example, the document 'The green, green grass grows' would be represented by the
dictionary:
{‘grass’ : 1, ‘green’ : 2, ‘grows’ : 1, ‘the’ : 1} ignoring letter case.

Page 11 of 40

4.2.8 Vectors

4.2.8.1 Vectors

Be familiar with the concept of a vector and the following notations for specifying a vector:
• [2.0, 3.14159, -1.0, 2.718281828]
• 4-vector over ℝ written as ℝ4
• function interpretation
• 0 ↦ 2.0
• 1 ↦ 3.14159
• 2 ↦ -1.0
• 3 ↦ 2.718281828
• ↦ means maps to

That all the entries must be drawn from the same field, eg ℝ.

A vector can be represented as a list of numbers, as a function and as a way of representing
a geometric point in space.
A dictionary is a useful way of representing a vector if a vector is viewed as a function.
f : S → ℝ
the set S = {0,1,2,3} and the co-domain, ℝ, the set of Reals
For example, in Python the 4-vector example could be represented as a dictionary as
follows:
{0:2.0, 1:3.14159, 2:-1.0, 3:2.718281828}

Dictionary representation of a vector.

List representation of a vector.

1-D array representation of a vector.

Visualising a vector as an arrow.

Vector addition and scalar-vector multiplication.

Know that vector addition achieves translation and scalar-vector multiplication achieves
scaling.

Convex combination of two vectors, u and v.

Is an expression of the form αu + βv where α, β ≥ 0 and α + β = 1

Dot or scalar product of two vectors.

The dot product of two vectors, u and v,
u = [u1, …., un] and v = [v1, ….., vn] is
u ∙ v = u1v1 + u2v2 + …… + unvn

Page 12 of 40

Applications of dot product.

Generating parity given two vectors u and v over
GF(2) :
u = [1, 1, 1, 1] and v = [1, 0, 1, 1]
u ∙ v = 1

where GF(2) has two elements, 0 and 1. Arithmetic over GF(2) can be summarised in two
small tables:

This can be achieved by bitwise AND operation.

This can be achieved by bitwise XOR operation. Subtraction is identical to addition, -1 = 1
and -0 = 0.

Page 13 of 40

4.3 Fundamentals of Algorithms

4.3.1 Graph Traversal

4.3.1.1 Simple graph-traversal algorithms

Be able to trace breadth-first and depth- first search algorithms and describe typical
applications of both.

 Breadth-first: shortest path for an unweighted graph.

 Depth-first: Navigating a maze.

4.3.2 Tree Traversal

4.3.2.1 Simple tree-traversal algorithms

Be able to trace the tree-traversal algorithms:
• pre-order
• post-order
• in-order

 Pre-order is a depth-first traversal.
 Post-order is a breadth-first traversal.

Be able to describe uses of tree-traversal algorithms (Pre-Order, In-Order, Post-Order)

 Pre-Order: copying a tree, producing prefix expression from an expression tree.

 In-Order: binary search tree.

 Post-Order: Infix to RPN (Reverse Polish Notation) conversions, producing a postfix
expression from an expression tree, emptying a tree.

4.3.3 Reverse Polish

4.3.3.1 Reverse Polish – infix transformations

Be able to convert simple expressions in infix form to Reverse Polish notation (RPN) form
and vice versa. Be aware of why and where it is used.

 Eliminates need for brackets in sub-expressions.

 Expressions in a form suitable for evaluation using a stack.

 Used in interpreters based on a stack for example

 Postscript and bytecode.

4.3.4 Searching Algorithms

4.3.4.1 Linear search

Know and be able to trace and analyse the complexity of the linear search algorithm.
(Time complexity is O(n).)

Page 14 of 40

4.3.4.2 Binary Search

Know and be able to trace and analyse the time complexity of the binary search algorithm.
(Time complexity is O(log n).)

4.3.4.3 Binary Tree Search

Be able to trace and analyse the time complexity of the binary tree search algorithm.
(Time complexity is O(log n).)

4.3.5 Sorting Algorithms

4.3.5.1 Bubble Sort

Know and be able to trace and analyse the time complexity of the bubble sort algorithm.

 This is included as an example of a particularly inefficient sorting algorithm, time-wise.
Time complexity is O(n2).

4.3.5.2 Merge Sort

Be able to trace and analyse the time complexity of the merge sort algorithm.

The 'merge' sort is an example of 'Divide and Conquer' approach to problem solving.
It’s time complexity is O(nlog n).

4.3.6 Optimisation algorithms

4.3.6.1 Dijkstra’s shortest path algorithm

Understand and be able to trace Dijkstra’s shortest path algorithm. Be aware of
applications of shortest path algorithm.

Students will not be expected to recall the steps in Dijkstra's shortest path algorithm.

Page 15 of 40

4.4 Theory of Computation

4.4.1 Abstraction and automation

4.4.1.1 Problem-solving

Be able to develop solutions to simple logic problems.

Be able to check solutions to simple logic problems.

4.4.1.2 Following and writing algorithms

Understand the term algorithm.

Be able to express the solution to a simple problem as an algorithm using pseudo-code,
with the standard constructs:

• sequence

• assignment (x=1)

• selection (IF ….. Then)

• iteration (loops)

Be able to hand-trace algorithms.

Be able to convert an algorithm from pseudo-code into high level language program code.

Be able to articulate how a program works, arguing for its correctness and its efficiency
using logical reasoning, test data and user feedback.

3.4.1.3 Abstraction

Be familiar with the concept of abstraction as used in computations and know that:
• representational abstraction is a representation arrived at by removing unnecessary
details
• abstraction by generalisation or categorisation is a grouping by common characteristics to
arrive at a hierarchical relationship of the 'is a kind of' type.

4.4.1.4 Information hiding

Be familiar with the process of hiding all details of an object that do not on tribute to its

essential characteristics.

4.4.1.5 Procedural abstraction

Know that procedural abstraction represents a computational method.

4.4.1.6 Functional abstraction

Know that for functional abstraction the particular computation method is hidden.

4.4.1.7 Data abstraction

Know that details of how data are actually represented are hidden, allowing new kinds
of data objects to be constructed from previously defined types of data objects.

4.4.1.8 Problem abstraction/reduction

Know that details are removed until the problem is represented in a way that is possible
to solve because the problem reduces to one that has already been solved.

Page 16 of 40

4.4.1.9 Decomposition

Know that procedural decomposition means breaking a problem into a number of sub-
problems, so that each sub-problem accomplishes an identifiable task, which might itself be
further subdivided.

4.4.1.10 Composition

Know how to build a composition abstraction by combining procedures to form
compound procedures.

Know how to build data abstractions by combining data objects to form compound data,
for example tree data structure.

4.4.1.11 Automation

Understand that automation requires putting models (abstraction of real world objects/
phenomena) into action to solve problems. This is achieved by:

• creating algorithms

• implementing the algorithms in program code (instructions)

• implementing the models in data structures

• executing the code.

4.4.2 Regular Languages

4.4.2.1 Finite state machines (FSMs) without output

Be able to draw and interpret simple state transition diagrams and state transition tables
for FSMs with no output.

4.4.2.2 Maths for regular expressions

Be familiar with the concept of a set and the following notations for specifying a set:
A = {1, 2, 3, 4, 5 }
or set comprehension:
A = {x | x ∈ ℕ ∧ x ≥ 1 }
where A is the set consisting of those objects x such that x ∈ ℕ and x ≥ 1 is true.
Know that the empty set, {}, is the set with no elements.
Know that an alternative symbol for the empty set is Ø.

Be familiar with the compact representation of a set, for example, the set {0n1n | n ≥ 1}.
This set contains all strings with an equal number of 0 s and 1s.

Be familiar with the concept of:
• finite sets
• infinite sets
• countably infinite sets
• cardinality of a finite set
• Cartesian product of sets.

Page 17 of 40

Be familiar with the meaning of the term:
• subset
• proper subset
• countable set.

Be familiar with the set operations:
• membership
• union
• intersection
• difference.

4.4.2.3 Regular Expression

Know that a regular expression is simply a way of describing a set and that regular
expressions allow particular types of languages to be described in a convenient shorthand
notation.

Be able to form and use simple regular expressions for string manipulation and matching.

Be able to describe the relationship between regular expressions and FSMs.

Be able to write a regular expression to recognise the same language as a given FSM and
vice versa.

4.4.2.4 Regular Language

Know that a language is called regular if it can be represented by a regular expression.

4.4.3 Context Free Languages

4.4.3.1 Backus-Naur Form (BNF)/syntax diagrams

Be able to check language syntax by referring to BNF or syntax diagrams and formulate
simple production rules.

Be able to explain why BNF can represent some languages that cannot be represented
using regular expressions.

4.4.4 Classification of Algorithms

4.4.4.1 Comparing algorithms
Understand that algorithms can be compared by expressing their complexity as a function
relative to the size of the problem. Understand that the size of the problem is the key issue.

Understand that some algorithms are more
efficient:
• time-wise than other algorithms
• space-wise than other algorithms.

4.4.4.2 Maths for understanding Big-0 notation

Page 18 of 40

Be familiar with the mathematical concept of a function as a mapping from one set of
values, the domain, to another set of values, drawn from the co-domain, for example ℕ →
ℕ.

Be familiar with the concept of:
• a linear function, for example y = 2x
• a polynomial function, for example y = 2x2
• an exponential function, for example y = 2x
• a logarithmic function, for example y = log10 x.

Be familiar with the notion of permutation of a set of objects or values, for example, the
letters of a word and that the permutation of n distinct objects is n factorial (n!).

4.4.4.3 Order of complexity

Be familiar with Big-O notation to express time complexity and be able to apply it to cases
where the running time requirements of the algorithm grow in:
• constant time
• logarithmic time
• linear time
• polynomial time
• exponential time

Be able to derive the time complexity of an algorithm.

4.4.4.4 Limits of Computation
Be aware that algorithmic complexity and hardware impose limits on what can be
computed.

4.4.4.5 Classification of algorithmic problems

Know that algorithms may be classified as being either:

 tractable – problems that have a polynomial (or less) time solution are called tractable
problems.

 intractable – problems that have no polynomial (or less) time solution are called
intractable problems.

4.4.4.6 Computable and non-computable problems

Be aware that some problems cannot be solved algorithmically.

4.4.4.7 Halting problem

Describe the Halting problem (but not prove it), that is the unsolvable problem of
determining whether any program will eventually stop if given particular input.

Understand the significance of the Halting problem for computation.

4.4.5 A model of Computation

4.4.5.1 Turing machine

Be familiar with the structure and use of Turing machines that perform simple
computations.

Page 19 of 40

Know that a Turing machine can be viewed as a computer with a single fixed program,
expressed using:
• a finite set of states in a state transition diagram
• a finite alphabet of symbols
• an infinite tape with marked-off squares
• a sensing read-write head that can travel along the tape, one square at a time.
One of the states is called a start state and states that have no outgoing transitions are
called halting states.

Understand the equivalence between a transition function and a state transition diagram.

Be able to:
• represent transition rules using a transition function
• represent transition rules using a state transition diagram
• hand-trace simple Turing machines.

Be able to explain the importance of Turing machines and the Universal Turing machine to
the subject of computation.

Page 20 of 40

4.5 Fundamentals of Data Representation

4.5.1 Number systems

4.5.1.1 Natural numbers

Be familiar with the concept of a natural number and the set ℕ of natural numbers
(including zero).

4.5.1.2 Integer numbers

Be familiar with the concept of an integer and the set ℤ of integers.

4.5.1.3 Rational numbers

Be familiar with the concept of a rational number and the set ℚ of rational numbers, and
that this set includes the integers.

4.5.1.4 Irrational numbers

Be familiar with the concept of an irrational number.

4.5.1.5 Real numbers

Be familiar with the concept of a real number and the set ℝ of real numbers, which
includes the natural numbers, the rational numbers, and the irrational numbers.

4.5.1.6 Ordinal numbers

Be familiar with the concept of ordinal numbers and their use to describe the numerical
positions of objects.

4.5.1.7 Counting and measurement

Be familiar with the use of:

• natural numbers for counting

• real numbers for measurement

4.5.2 Number bases

4.5.2.1 Number base

Be familiar with the concept of a number base, in
particular:

• decimal (base 10)

• binary (base 2)

• hexadecimal (base 16).

Convert between decimal, binary and hexadecimal number bases.

Be familiar with, and able to use, hexadecimal as a shorthand for binary and to understand
why it is used in this way.

Page 21 of 40

4.5.3 Units of information

4.5.3.1 Bits and bytes

Know that:

• the bit is the fundamental unit of information

• a byte is a group of 8 bits.

Know that the 2n different values can be represented with n bits.

4.5.3.2 Units

Know that quantities of bytes can be described using binary prefixes representing powers
of 2 or using decimal prefixes representing powers of 10, eg one kibibyte is written as 1KiB
= 210 B and one kilobyte is written as 1 kB = 103 B.

Know the names, symbols and corresponding powers of 2 for the binary prefixes:
• kibi, Ki - 210
• mebi, Mi - 220
• gibi, Gi - 230
• tebi, Ti - 240

Know the names, symbols and corresponding powers of 10 for the decimal prefixes:
• kilo, k - 103
• mega, M - 106
• giga, G - 109
• tera, T - 1012

4.5.4 Binary number system

4.5.4.1 Unsigned binary

Know the difference between unsigned binary and signed binary.

Know that in unsigned binary the minimum and maximum values for a given number of
bits, n, are 0 and 2n -1 respectively.

4.5.4.2 Unsigned binary arithmetic

Be able to:

• add two unsigned binary integers

• multiply two unsigned binary integers.

4.5.4.3 Signed binary using two’s complement

Know that signed binary can be used to represent negative integers and that one possible
coding scheme is two’s complement.

Know how to:

• represent negative and positive integers in two’s complement

• perform subtraction using two’s complement

• calculate the range of a given number of bits,n.

Page 22 of 40

4.5.4.4 Numbers with a fractional part

Know how numbers with a fractional part can be represented in:

• fixed point form in binary in a given number of bits.

Be able to convert from:

• decimal to binary of a given number of bits

• binary to decimal of a given number of bits.

4.5.4.5 Rounding errors

Know and be able to explain why both fixed point and floating point representation of
decimal numbers may be inaccurate. Some values cannot ever be represented exactly, for
example 0.110.

4.5.4.6 Absolute and relative errors

Be able to calculate the absolute error of numerical data stored and processed in computer
systems.

Be able to calculate the relative error of numerical data stored and processed in computer
systems.

Compare absolute and relative errors for large and small magnitude numbers, and numbers
close to one.

4.5.4.7 Range and precision

Compare the advantages and disadvantages of fixed point and floating point forms in terms
of range, precision and speed of calculation.

4.5.4.8 Normalisation of floating point form

Know why floating point numbers are normalised and be able to normalise un-normalised
floating point numbers with positive or negative mantissas.

4.5.4.9 Underflow and overflow

Explain underflow and overflow and describe the circumstances in which they occur.

4.5.5 Information coding systems

4.5.5.1 Character form of a decimal digit

Differentiate between the character code representation of a decimal digit and its pure
binary representation.

4.5.5.2 ASCII and Unicode

Describe ASCII and Unicode coding systems for coding character data and explain why
Unicode was introduced.

4.5.5.3 Error checking and correction

Page 23 of 40

Describe and explain the use of:
• parity bits
• majority voting
• check digits.

3.5.6 Representing images, sound and other data

4.5.6.1 Bit patterns, images, sound and other data

Describe how bit patterns may represent other forms of data, including graphics and
sound.

4.5.6.2 Analogue and digital

Understand the difference between analogue and digital:

• data

• signals.

4.5.6.3 Analogue/digital conversion

Describe the principles of operation of:

• an analogue to digital converter (ADC)

• a digital to analogue converter (DAC).

4.5.6.4 Bitmapped graphics

Explain how bitmaps are represented.

Explain the following for bitmaps:

• resolution

• colour depth

• size in pixels.

Calculate storage requirements for bitmapped images and be aware that bitmap image
files may also contain metadata.

Be familiar with typical metadata.

4.5.6.5 Vector graphics

Explain how vector graphics represents images using lists of objects.

Give examples of typical properties of objects.

Use vector graphic primitives to create a simple vector graphic.

4.5.6.6 Vector graphics versus bitmapped graphics
Compare the vector graphics approach with the bitmapped graphics approach and
understand the advantages and disadvantages of each.

Be aware of appropriate uses of each approach.

4.5.6.7 Digital representation of sound

Describe the digital representation of sound in
terms of:
• sample resolution
• sampling rate and the Nyquist theorem.

Page 24 of 40

Calculate sound sample sizes in bytes.

4.5.6.6 Musical Instrument Digital Interface (MIDI)

Describe the purpose of MIDI and the use of event messages in MIDI.

Describe the advantages of using MIDI files for representing music.

4.5.6.7 Data compression

Know why images and sound files are often compressed and that other files, such as
text files, can also be compressed.

Understand the difference between lossless and lossy compression and explain the
advantages and disadvantages of each.

Explain the principles behind the following techniques for lossless compression:

• run length encoding (RLE)

• dictionary-based methods.

4.5.6.8 Encryption

Understand what is meant by encryption and be able to define it.

Be familiar with Caesar cipher and be able to apply it to encrypt a plaintext message and
decrypt a ciphertext.
Be able to explain why it is easily cracked.

Be familiar with Vernam cipher or one-time pad and be able to apply it to encrypt a
plaintext message and decrypt a ciphertext.

Explain why Vernam cipher is considered as a cypher with perfect security.

Compare Vernam cipher with ciphers that depend on computational security.

Page 25 of 40

4.6 Fundamentals of Computer Systems

4.6.1 Hardware and software

4.6.1.1 Relationship between hardware and software

Understand the relationship between hardware and software and be able to define the
terms:

• hardware

• software.

4.6.1.2 Classification of software

Explain what is meant by:

• system software

• application software.

Understand the need for, and attributes of, different types of software.

4.6.1.3 System software

Understand the need for, and functions of the following system software:

• operating systems (OSs)

• utility programs

• libraries

• translators (compiler, assembler, interpreter).

4.6.1.4 Role of an operating system (OS)

Understand that the role of the operating system is to create a virtual machine. This means
that the complexities of the hardware are hidden from the user.

Know that the OS handles resource management, managing hardware to allocate
processors, memories and I/O devices among competing processes.

4.6.2 Classification of programming languages

4.6.2.1 Classification of programming languages

Show awareness of the development of types of programming languages and their
classification into low-and high-level languages.

Know that low-level languages are considered to be:

• machine-code

• assembly language.

Know that high-level languages include imperative high level-language.

Describe machine-code language and assembly language.

Understand the advantages and disadvantages of machine-code and assembly language
programming compared with high-level language programming.

Explain the term ‘imperative high-level language’ and its relationship to low-level

languages.

Page 26 of 40

4.6.3 Types of program translator

4.6.3.1 Types of program translator

Understand the role of each of the following:
• assembler
• compiler
• Interpreter
Explain the differences between compilation and interpretation. Describe situations in
which each would be appropriate.

Explain why an intermediate language such as bytecode is produced as the final output by
some compilers and how it is subsequently used.

Understand the difference between source and object (executable) code.

4.6.4 Logic gates

4.6.4.1 Logic gates

Construct truth tables for the following logic gates:

• NOT

• AND

• OR

• XOR

• NAND

• NOR.

Be familiar with drawing and interpreting logic gate circuit diagrams involving one or more
of the above gates.

Complete a truth table for a given logic gate circuit.

Write a Boolean expression for a given logic gate circuit.

Draw an equivalent logic gate circuit for a given Boolean expression.

Recognise and trace the logic of the circuits of a half-adder and a full-adder.

Construct the circuit for a half-adder.

Be familiar with the use of the edge-triggered D-type flip-flop as a memory unit.

4.6.5 Boolean algebra

4.6.5.1 Using Boolean algebra

Be familiar with the use of Boolean identities and De Morgan’s laws to manipulate and
simplify Boolean expressions.

Page 27 of 40

4.7 Computer Organization and Architecture

4.7.1 Internal hardware components of a computer

4.7.1.1 Internal hardware components of a computer

Have an understanding and knowledge of the basic internal components of a computer
system.

Understand the role of the following components and how they relate to each other:

• processor

• main memory

• address bus

• data bus

• control bus

• I/O controllers.

Understand the need for, and means of, communication between components. In
particular, understand the concept of a bus and how address, data and control buses are
used.

Be able to explain the difference between von Neumann and Harvard architectures and
describe where each is typically used.

Understand the concept of addressable memory.

4.7.2 The stored program concept

4.7.2.1 The meaning of the stored program concept

Be able to describe the stored program concept: machine code instructions stored in main
memory are fetched and executed serially by a processor that performs arithmetic and
logical operations.

4.7.3 Structure and role of the processor and its components

4.7.3.1 The processor and its components

Explain the role and operation of a processor and its major components:

• arithmetic logic unit

• control unit

• clock

• general-purpose registers

• dedicated registers, including:

• program counter

• current instruction register

• memory address register

• memory buffer register

• status register.

Page 28 of 40

3.7.3.2 The Fetch-Execute cycle and the role of registers within it

Explain how the Fetch-Execute cycle is used to execute machine code programs, including
the stages in the cycle (fetch, decode, execute) and details of registers used.

3.7.3.3 The processor instruction set

Understand the term ‘processor instruction set’ and know that an instruction set is
processor specific.

Know that instructions consist of an opcode and one or more operands (value, memory
address or register).

3.7.3.4 Addressing modes

Understand and apply immediate and direct addressing modes.

3.7.3.5 Machine-code/assembly language operations

Understand and apply the basic machine-code operations of:
• load
• add
• subtract
• store
• branching (conditional and unconditional)
• compare
• logical bitwise operators (AND, OR, NOT, XOR)
• logical
• shift right
• shift left
• halt.
Use the basic machine-code operations above when machine-code instructions are
expressed in mnemonic form- assembly language, using immediate and direct addressing.

4.7.3.6 Interrupts

Describe the role of interrupts and interrupt service routines (ISRs); their effect on the
Fetch- Execute cycle; and the need to save the volatile environment while the interrupt is
being serviced.

4.7.3.7 Factors affecting processor performance

Explain the effect on processor performance of:

• multiple cores

• cache memory

• clock speed

• word length

• address bus width

• data bus width.

Page 29 of 40

4.7.4 External hardware devices

4.7.4.1 Input and output devices

Know the main characteristics, purposes and suitability of the devices and understand their

principles of operation.

Devices that need to be considered are:

• barcode reader

• digital camera

• laser printer
• RFID.

4.7.4.2 Secondary storage devices

Explain the need for secondary storage within a computer system.

Know the main characteristics, purposes, suitability and understand the principles of
operation of the following devices:
• hard disk
• optical disk
• solid-state disk (SSD).

Compare the capacity and speed of access of various media and make a judgement about
their suitability for different applications.

Page 30 of 40

4.8 Consequences of uses of Computing

Individual (moral), social (ethical), legal and cultural issues and opportunities

Show awareness of current individual (moral), social (ethical), legal and cultural
opportunities and risks of computing.
Understand that:
• developments in computer science and the digital technologies have dramatically altered
the shape of communications and information flows in societies, enabling massive
transformations in the capacity to:
• monitor behaviour
• amass and analyse personal information
• distribute, publish, communicate and disseminate personal information
• computer scientists and software engineers therefore have power, as well as the
responsibilities that go with it, in the algorithms that they devise and the code that they
deploy
• software and their algorithms embed moral and cultural values
• the issue of scale, for software the whole world over, creates potential for individual
computer scientists and software engineers to produce great good, but with it comes the
ability to cause great harm.
Be able to discuss the challenges facing legislators in the digital age.

Page 31 of 40

4.9 Communication and Networking
4.9.1 Communication

4.9.1.1 Communication methods

Define serial and parallel transmission methods and discuss the advantages of serial over
parallel transmission.

Define and compare synchronous and asynchronous data transmission.

Describe the purpose of start and stop bits in asynchronous data transmission.

4.9.1.2 Communication basics

Define:

• baud rate

• bit rate

• bandwidth

• latency

• protocol

Differentiate between baud rate and bit rate.

Understand the relationship between bit rate and bandwidth.

4.9.2 Networking

4.9.2.1 Network topology

Understand:

• physical star topology

• logical bus network topology

and:

• differentiate between them

• explain their operation
• compare each (advantages and disadvantages).

4.9.2.2 Types of networking between hosts

Explain the following and describe situations where they might be used:

• peer-to-peer networking

• client-server networking.

4.9.2.3 Wireless networking

Explain the purpose of WiFi.

Be familiar with the components required for wireless networking.

Be familiar with how wireless networks are secured.

Explain the wireless protocol Carrier Sense Multiple Access with Collision Avoidance
(CSMA/ CA) with and without Request to Send/Clear to Send (RTS/CTS).

Be familiar with the purpose of Service Set Identifier (SSID).

Page 32 of 40

4.9.3 The Internet

4.9.3.1 The Internet and how it works

Understand the structure of the Internet.

Understand the role of packet switching and routers.

Know the main components of a packet.

Define:
• router
• gateway.
Consider where and why they are used.

Explain how routing is achieved across the Internet.

Describe the term 'uniform resource locator'
(URL) in the context of internetworking.

Explain the terms ‘domain name’ and ‘IP address’.

Describe how domain names are organised.

Understand the purpose and function of the domain service and its reliance on the Domain
Name Server (DNS) system.

Explain the service provided by Internet registries and why they are needed.

4.9.3.2 Internet Security

Understand how a firewall works (packet filtering, proxy server, stateful inspection).

Explain symmetric and asymmetric (private/public key) encryption and key exchange.

Explain how digital certificates and digital signatures are obtained and used.

Discuss worms, trojans and viruses, and the vulnerabilities that they exploit.

Discuss how improved code quality, monitoring and protection can be used to address
worms, trojans and viruses.

4.9.4 The Transmission Control Protocol/Internet Protocol (TCP/IP) protocol

4.9.4.1 TCP/IP
Describe the role of the four layers of the TCP/IP stack (application, transport, network,
link).

Describe the role of sockets in the TCP/IP stack.

Be familiar with the role of MAC (Media Access Control) addresses.

Explain what the well-known ports and client ports are used for and the differences
between them.

4.9.4.2 Standard application layer protocols

Page 33 of 40

Be familiar with the following protocols:
• FTP (File Transfer Protocol)
• HTTP (Hypertext Transfer Protocol)
• HTTPS (Hypertext Transfer Protocol Secure)
• POP3 (Post Office Protocol (v3))
• SMTP (Simple Mail Transfer Protocol)
• SSH (Secure Shell).

Be familiar with FTP client software and an FTP server, with regard to transferring files
using anonymous and non-anonymous access.

Be familiar with how SSH is used for remote management.

Know how an SSH client is used to make a TCP connection to a remote port for the purpose
of sending commands to this port using application level protocols such as GET for HTTP,
SMTP commands for sending email and POP3 for retrieving email.

Be familiar with using SSH to log in securely to a remote computer and execute commands.

Explain the role of an email server in retrieving and sending email.

Explain the role of a web server in serving up web pages in text form.

Understand the role of a web browser in retrieving web pages and web page resources and
rendering these accordingly.

4.9.4.3 IP address structure

Know that an IP address is split into a network identifier part and a host identifier part.

4.9.4.4 Subnet masking

Know how a subnet mask is used to identify the network identifier part of the IP address.

4.9.4.5 IP standards

Know that there are currently two standards of IP address, v4 and v6.

Know why v6 was introduced.

4.9.4.6 Public and private IP addresses

Distinguish between routable and non-routable IP addresses.

4.9.4.7 Dynamic Host Configuration Protocol (DHCP)

Understand the purpose and function of the DHCP system.

4.9.4.8 Network Address Translation (NAT)

Explain the basic concept of NAT and why it is used.

4.9.4.9 Network Address Translation (NAT)

Explain the basic concept of port forwarding and why it is used.

4.9.4.10 Client server model

Be familiar with the client server model.

Page 34 of 40

Be familiar with the Websocket protocol and know why it is used and where it is used.

Be familiar with the principles of Web CRUD
Applications and REST:
• CRUD is an acronym for:
• C – Create
• R – Retrieve
• U – Update
• D – Delete.

• REST enables CRUD to be mapped to database functions (SQL) as follows:
• GET → SELECT
• POST → INSERT
• DELETE → DELETE
• PUT → UPDATE.

Compare JSON (Java script object notation) with XML.

4.9.4.11 Thin- versus thick-client computing

Compare and contrast thin-client computing with thick-client computing.

Page 35 of 40

4.10 Fundamentals of Databases
4.10.1 Conceptual data models and entity relationship modelling

Produce a data model from given data requirements for a simple scenario involving
multiple entities.

Produce entity relationship diagrams representing a data model and entity descriptions in
the form: Entity1 (Attribute1, Attribute2,).

4.10.2 Relational databases

Explain the concept of a relational database.

Be able to define the terms:
• attribute
• primary key
• composite primary key
• foreign key

4.10.3 Database design and normalisation techniques

Normalise relations to third normal form.

Understand why databases are normalised.

4.10.4 Structured Query Language (SQL)

Be able to use SQL to retrieve, update, insert and delete data from multiple tables of a
relational database.

Be able to use SQL to define a database table.

4.10.5 Client server databases

Know that a client server database system provides simultaneous access to the database
for multiple clients.
(Know how concurrent access can be controlled to preserve the integrity of the database.
Concurrent access can result in the problem of updates being lost if two clients edit a record at the
same time. This problem can be managed by the use of record locks, serialisation, timestamp
ordering, commitment ordering.)

Page 36 of 40

4.11 Big Data
4.11.1 Big Data

Know that 'Big Data' is a catch-all term for data that won't fit the usual containers. Big Data
can be described in terms of:
• volume – too big to fit into a single server
• velocity – streaming data, milliseconds to seconds to respond
• variety – data in many forms such as structured, unstructured, text, multimedia

Whilst its size receives all the attention, the most difficult aspect of Big Data really involves its lack of
structure. This lack of structure poses challenges because:
• analysing the data is made significantly more difficult
• relational databases are not appropriate because they require the data to fit into a row- and-
column format.

Machine learning techniques are needed to discern patterns in the data and to extract useful
information.
'Big' is a relative term, but size impacts when
the data doesn’t fit onto a single server because
relational databases don’t scale well across
multiple machines.

Data from networked sensors, smartphones, video surveillance, mouse clicks etc are continuously
streamed.

Know that when data sizes are so big as not to fit on to a single server:
• the processing must be distributed across more than one machine
• functional programming is a solution, because it makes it easier to write correct and
efficient distributed code.

Know what features of functional programming make it easier to write:
• correct code
• code that can be distributed to run across more than one server.

Be familiar with the:
• fact-based model for representing data
• graph schema for capturing the structure of the dataset
• nodes, edges and properties in graph schema.

Each fact within a fact-based model captures a single piece of information.

Page 37 of 40

4.12 Fundamentals of Functional programming

4.12.1 Functional programming paradigm

4.12.1.1 Function type

Know that a function, f, has a function type
f: A → B (where the type is A → B, A is the argument type, and B is the result type).
Know that A is called the domain and B is called the co-domain.
Know that the domain and co-domain are always subsets of objects in some data type.

Loosely speaking, a function is a rule that, for each element in some set A of inputs, assigns an output
chosen from set B, but without necessarily using every member of B. For example,

f: {a,b,c,…z} → {0,1,2,…,25} could use the rule that maps a to 0, b to 1, and so on, using all values
which are members of set B.
The domain is a set from which the function’s input values are chosen.

The co-domain is a set from which the function’s output values are chosen. Not all of the co-
domain’s members need to be outputs.

4.12.1.2 First-class object

Know that a function is a first-class object in functional programming languages and in
imperative programming languages that support such objects. This means that it can be an
argument to another function as well as the result of a function call.

First-class objects (or values) are objects which may:
• appear in expressions
• be assigned to a variable
• be assigned as arguments
• be returned in function calls.

For example, integers, floating-point values, characters and strings are first class objects in many
programming languages.

4.12.1.3 Function application

Know that function application means a function applied to its arguments.

The process of giving particular inputs to a function is called function application, for example
add(3,4) represents the application of the function add to integer arguments 3 and 4.
The type of the function is f: integer x integer → integer

where integer x integer is the Cartesian product of the set integer with itself.

Although we would say that function f takes two arguments, in fact it takes only one argument,
which is a pair, for example (3,4).

Page 38 of 40

4.12.1.4 Partial function application

Know what is meant by partial function application for one, two and three argument
functions and be able to use the notations shown opposite.

The function add takes two integers as arguments and gives an integer as a result. Viewed as follows
in the partial function application scheme:
add: integer → (integer → integer)
The brackets may be dropped so function add becomes add:
integer → integer → integer

The function add is now viewed as taking one argument after another and returning a result of data
type integer.

4.12.1.5 Composition of functions

Know what is meant by composition of functions.

The operation functional composition combines two functions to get a new function.
Given two functions
f: A → B
g: B → C
function g ○ f, called the composition of g and f, is a function whose domain is A and co-domain is C.
If the domain and co-domains of f and g are ℝ, and f(x) = (x + 2) and g(y) = y3. Then
g ○ f = (x + 2)3
f is applied first and then g is applied to the result returned by f.

4.12.2 Writing functional programs

4.12.2.1 Functional language programs

Show experience of constructing simple programs in a functional programming language.

Higher-order functions.

A function is higher-order if it takes a function as an argument or returns a function as a result, or
does both.

Have experience of using the following in a functional programming language:
• map
• filter
• reduce or fold.

map is the name of a higher-order function that applies a given function to each
element of a list, returning a list of results.

filter is the name of a higher-order function that processes a data structure, typically a list,
in some order to produce a new data structure containing exactly those elements of the
original data structure that match a given condition.

reduce or fold is the name of a higher-order function which reduces a list of values to a

single value by repeatedly applying a combining function to the list values.

Page 39 of 40

4.12.3 Lists in functional programming

4.12.3.1 List processing

Be familiar with representing a list as a concatenation of a head and a tail.

Know that the head is an element of a list and the tail is a list.
Know that a list can be empty.
Describe and apply the following operations:
• return head of list
• return tail of list
• test for empty list
• return length of list
• construct an empty list
• prepend an item to a list
• append an item to a list.

Have experience writing programs for the list operations mentioned above in a functional
programming language or in a language with support for the functional paradigm.

For example, in Haskell the list [4, 3, 5] can be written in the form head:tail where head is the first
item in the list and tail is the remainder of the list. In the example, we have 4:[3, 5]. We call 4 the
head of the list and [3, 5] the tail.
[] is the empty list.

Page 40 of 40

4.13 Software Development (Project)

4.13.1 Aspects of software development

4.13.1.1 Analysis

Be aware that before a problem can be solved, it must be defined, the requirements of the
system that solves the problem must be established and a data model created.
Requirements of system must be established by interaction with the intended users of the
system. The process of clarifying requirements may involve prototyping/ agile approach.

4.13.1.2 Design

Be aware that before constructing a solution, the solution should be designed and
specified, for example planning data structures for the data model, designing algorithms,
designing an appropriate modular structure for the solution and designing the human user
interface.

Be aware that design can be an iterative process involving a prototyping/agile approach.

3.3.1.3 Implementation

Be aware that the models and algorithms need to be implemented in the form of data
structures and code (instructions) that a computer can understand.

Be aware that the final solution may be arrived at using an iterative process employing
prototyping/ an agile approach with a focus on solving the critical path first.

3.3.1.4 Testing

Be aware that the implementation must be tested for the presence of errors, using selected
test data covering normal (typical), boundary and erroneous data.

It should also undergo acceptance testing with the intended user(s) of the system to ensure
that the intended solution meets its specification.

3.3.1.5 Evaluation

Know the criteria for evaluating a computer system.

